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COMMON REFLECTION POINT DATA-STACKING
TECHNIQUE FOR CONVERTED WAVES!

G. TESSMER and A. BEHLE?

ABSTRACT

TessMER, G. and BEHLE, A. 1988. Common reflection point data-stacking for converted waves.
Geophysical Prospecting 36, 671-688.

For converted waves stacking requires a true common reflection point gather which, in
this case, is also a common conversion point (CCP) gather. We consider converted waves of
the PS- and SP-type in a stack of horizontal layers.

The coordinates of the conversion points for waves of PS- or SP-type, respectively, in a
single homogeneous layer are calculated as a function of the offset, the reflector depth and the
velocity ratio v,/v,. Knowledge of the conversion points enables us to gather the seismic
traces in a common conversion point (CCP) record. Numerical tests show that the CCP
coordinates in a multilayered medium can be approximated by the equations given for a
single layer. In practical applications, an a priori estimate of v,/v is required to obtain the
CCEP for a given reflector depth.

A series expansion for the traveltime of converted waves as a function of the offset is
presented. Numerical examples have been calculated for several truncations. For small offsets,
a hyperbolic approximation can be used. For this, the rms velocity of converted waves is
defined. A Dix-type formula, relating the product of the interval velocities of compressional
and shear waves to the rms velocity of the converted waves, is presented.

INTRODUCTION

Stacking techniques for common reflection point data are commonly used in reflec-
tion seismology to attenuate multiples and random noise and to estimate the sub-
surface velocity distribution. The application of this technique to converted waves of
PS- or SP-type is not as simple as for PP- or SS-reflections, which essentially have
symmetrical wave paths.

The path of the converted wave is asymmetrical, even for the simple, horizon-
tally layered medium which is considered in this paper. Multiple coverage cannot
therefore be achieved by a common midpoint (CMP) gather but requires a true
common reflection point sorting which, in this case, yields a common conversion
point (CCP) gather.

! Received June 1987, revision accepted February 1988.
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672 G. TESSMER AND A. BEHLE

We consider the first steps towards common reflection point stacking and veloc-
ity analysis for converted waves. These steps are: (1) common reflection or common
conversion point sorting of data, and (2) traveltimes and rms velocities of converted
waves.

SORTING OF TRACES WITH A CoOMMON CONVERSION POINT

Several authors (e.g. Behle and Dohr 1985) have discussed the problems associated
with the gathering of converted wave data of common conversion points. The
sorting depends on the depth of the reflector and on the ratio of compressional and
shear-wave velocity v,/v;. For complex models the conversion point of the wave can
probably be established only by iterative methods, e.g. ray tracing. For a single
horizontal homogeneous layer, Fromm, Krey and Wiest (1985) derived the relation

X
=T+ ooy )

as a first-order approximation for the horizontal distance x,, of the conversion point
from the source point. Chung and Corrigan (1985) used this relation for a horizon-
tally layered medium to gather mode-converted shear waves in synthetic data. The
same relation, expressed in a slightly different form, was also used to stack field
data by Frasier and Winterstein (1986), who derived it from equations given by
Nefedkina (1980).

To obtain a focusing effect for a single reflector at arbitrary depth, the variation
of the conversion point coordinate x, with depth is significant (cf. Behle and Dohr
1985) and must be considered. The conversion point of a single horizontal reflector
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Fi1G. 1. The horizontal distance of the conversion point of PS-waves from the source point as
a function of the depth of a single reflector for several ratios v,/v, and an offset (a) 0.5 km,
(b) 2.0 km, and (c) 4.0 km. The straight lines have been calculated from (1) with v,/v, = 1.7.
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can be calculated as a function of the reflector depth z and the velocity ratio v,/v, for
a given offset x. A detailed description is given in Appendix A.

In Fig. 1 the conversion points of PS-waves calculated from (A15) are plotted as
a function of reflector depth for three selected offsets (0.5, 2.0 and 40 km
respectively) and three different values of the ratio v,/v,. The range between 1.7 and
2.3 may be considered as representative in practice excluding the extremely high
values found in shallow layers. For example, when the depth of the reflector is
2.3 km and the ratio v,/v, is 2.0, the horizontal distance of the conversion point
from the source point is 3.0 km when the offset is 4.0 km.

The horizontal distances x, of the conversion points from the shot point as
calculated from (1) for a velocity ratio of 1.7 are plotted for comparison. As these
values are independent of depth (cf. (1)) the resulting curves in Fig. 1 are vertical
straight lines, which represent the small angle of incidence approximation for the
horizontal coordinate of the conversion point. For shallow reflectors the approx-
imation of the conversion point by (1) may introduce large errors whereas (A15)
gives an accurate result for every depth.

An equivalent result can be obtained for SP-converted waves. Figure 2 shows
the horizontal distance x, of an SP-wave conversion point from the source point as
a function of the reflector depth and three selected values of v,/v, when the offset is
0.5, 2.0 and 4.0 km, respectively. In this SP-case the asymptotes are given by

X

Xy = ms‘) (2

which is analogous to (1).
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FiG. 2. The horizontal distance of the conversion point of SP-waves from the source point as
a function of the depth of a single reflector for several ratios v,/v, and an offset (a) 0.5 km,
(b) 2.0 km, and (c) 4.0 km. The straight lines have been calculated from (2) with v /v, = 1.7.



674 G. TESSMER AND A. BEHLE

><
S
Q
<
03
02...
0.1
OO T T T T T T T OO
16 17 19 21 23 256 27 29
Vp/Vs

Fi1G. 3. The horizontal coordinates of the conversion points of PS- and SP-waves, normalized
on the offset x,/x and x/x, respectively, as a function of the ratio v,/v, for several ratios z/x.
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F1G. 4. The model: P-wave velocity as a function of depth.
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The diagram in Fig. 3 shows the dependence of the horizontal coordinate of the
conversion point on the velocity ratio v,/v, and the reflector depth, as obtained from
(A15) and (A16) for PS- and SP-waves, respectively. Normalized values x,/x, x,/x
and z/x have been used. To demonstrate the use of the diagram let us first assume
that we want to estimate the change in x, for a certain change in v,/v, at a fixed
depth. If we have an offset of 1 km and a reflector at 1 km, i.e. z/x = 1, a change of
v,/v, by 0.1 from 1.9 to 2.0 will cause a change of 0.013 in x,/x so that the abscissa of
the conversion point will change by 13 m. Conversely the diagram can also be used
to quantify the change in the conversion point abscissa x,/x for a change in reflector
depth. Let us assume that we have calculated x, of a conversion point at a reflector
depth of 1 km and for an offset of 1 km (so that z/x = 1) assuming a v,/v, ratio of
2.1. If the reflector depth changes to 0.5 km, i.e. z/x = 0.5, then the curves in Fig. 3
indicate that x,/x will increase by 0.07, i.e. x, will increase by 70 m. If the change in
x, obtained from the diagram is less than one-half of the geophone group spacing,
then it can be neglected. The coordinates of the conversion point have been calcu-
lated for one horizontal reflector so far. They can, however, also be used as an
approximation for a stack of horizontal layers.

To show this, the true conversion points have been calculated by ray shooting
and compared with the conversion points calculated from (A15) for an equivalent
homogeneous layer of the same total thickness. The comparison has been made for
several models which have been derived from the simplified acoustic log shown in
Fig. 4. For example, the results of the comparison are shown in Fig. 5 for three
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F1G. 5. The approximation error, i.e. the distance of the conversion point, calculated from
(A15) with v,/v, = 2.0, from its position determined by ray shooting, as a function of the offset
for three models with different ratios v /v, in each of the ten layers of the log. (Note that the
offset range is restricted by the critical angle of conversion f* = arcsin (v,/v,).)
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different models. In all these models the P-wave velocity distribution v,(z) is the
same, whereas v,/v, has been varied. The models consist of the first ten layers of the
log (Fig. 4). In the first model the ratio v,/v, is the same for all layers and is equal to
2.0. For the second and third models the ratios v,/v, are different in each layer and
represent random numbers within the intervals 1.7-2.3 and 1.7-2.0, respectively. The
equivalent homogeneous layer used for comparison with each of the three models is
characterized by a velocity ratio v,/v; = 2.0.

Figure 5 shows the approximation error éx versus offset, where dx is the hori-
zontal distance between the true conversion point coordinate x,, .. (calculated by
ray shooting) and the straight-ray approximation for an equivalent homogeneous
layer x,, approx. @8 €xplained above:

ox = xp. true xp, approx. * (3)

For the three models considered, the maximum approximation error dx is 65 m
for offsets up to 2.7 km. For deeper reflection zones the approximation errors are
smaller for this model, even for slightly larger offsets.

These examples show that, if the depth of the refiector is not too small, the
seismic traces can be gathered with respect to a common conversion point (CCP)
using (A15) as an approximation for the conversion point in a multilayered medium.
The assumption of the v,/v; ratio which has to be made for the CCP sorting can
either be an a priori estimate or be derived from previous experience {shear-wave
well logging or SS-wave survey) in or near the area of investigation.

Note that for a given offset the seismic trace may belong to different CCP fam-
ilies with respect to different horizons, i.e. for a given CCP different traces have to
be gathered with respect to different horizons to achieve the optimum focusing
effect. The CCP sorting of traces is considered to be superior to CDP sorting, par-
ticularly where the PS-reflection coefficient of the reflector under consideration
shows considerable lateral changes.

TRAVELTIMES AND VELOCITIES OF CONVERTED WAVES

Taner and Koehler (1969) have shown that the traveltime of a wave which has been
reflected from the nth interface of a horizontally layered medium can be expanded
into a power series as follows

tx)=cy + X2+ e3x* ey x® 4+ 4

The coefficients c(n) have been derived for waves with a symmetrical wave path (PP,
SS). Janle (1981) used this expansion to calculate the traveltime of a PS-converted
wave for a single reflector.

We present an equivalent series expansion for a certain class of converted PS-
and SP-waves in a horizontally layered medium. We consider only those waves for
which we have one P- and one S-leg in each layer, regardless of whether they are
up- or downgoing. For reflections of this type the squared traveltime is an even
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FiG. 6. The time residue, ie. the difference between the exact traveltime and the approx-
imated traveltime of PS-waves as a function of the offset.

function of x, as for PP-waves, and it can be shown that the coefficients have a
similar form as for non-converted waves. Explicit formulae are given in Appendix B.
Comparing the expansion coefficients for PP-waves with those for PS-waves we can
formally define the rms velocity for a PS-reflection from the nth reflector by

5 — \/[ Zﬁ=1 (vm, + vsk)hk :I (5)

pen ZZ=1 (1/vy, + 1/ve )y '
where v,, and v, are the compressional and shear wave velocity of the kth layer
respectively, and h, is its thickness. For the bottom reflector (no. 19) of the model
shown in Fig. 4 the traveltimes of PS-reflections have been approximated by trun-
cating the power series after the second, third, fourth and fifth term respectively.
These approximate values have been subtracted from the exact traveltimes calcu-
lated by ray shooting. The residues are shown in Fig. 6 as a function of the offset.
For comparison the corresponding residues for PP-reflections are shown in Fig. 7.

The series for PS-reflection traveltimes does not converge as rapidly as the series
for PP-reflections. Nevertheless, the second term truncation which represents a
hyperbola can be used to give a satisfactory approximation for PS-moveout correc-
tions in this case. This has also been confirmed by some tests on field data, results of
which will be presented in a forthcoming paper.

To investigate the influence of the reflector depth on the hyperbolic approx-
imation, the residuals of the truncation after the second term have been calculated
for the fifth, tenth, fifteenth and (again) nineteenth reflector of the same model (Fig.
4). The corresponding reflectors are at depths of about 1.5, 2.0, 3.6 and 4.0 km
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FiG. 7. As Fig. 6 but for PP-waves.

respectively. The resulting time residuals are shown in Fig. 8. With decreasing reflec-
tor depth, the offset range for which the hyperbolic approximation stays within a
tolerable limit of 1 ms decreases down to 1 km for this model. These examples, as
well as analytical calculations, show that in the near-offset range the hyperbolic
approximation for the PS-traveltime curve is (under normal v /v, conditions) as
good as that for the PP-curve up to about 75% of the corresponding PP-offset.

If we assume the layers above the reflector under consideration to be laterally
homogeneous, then the traveltimes on any trace of given offset are identical. There-
fore the traveltime approximations derived above for a single shot can be used to
calculate normal moveout corrections as a function of offset for CCP gathers as
well. Thus standard processing techniques can be applied to a CCP gather within
the offset range discussed above to produce a PS-reflection stack for the horizon on
which the CCP gather has been focused. The depth range for which focusing can be
achieved with sufficient accuracy can be estimated from (A15) in Appendix A or
Fig. 3. .

Also, a standard velocity analysis can be applied to the CCP gather to determine
the PS-stacking velocity, which can be used to produce a stacked time section. This
will of course depend on the a priori estimate of v,/v, used for the CCP sorting. To
establish this dependence, additional quantitative analysis is required. As the CCP
sorting also depends on the depth of the reflector, it may be necessary to re-gather
the data in order to achieve CCP-focusing also at other desired depth ranges. The
focusing quality obtained for a certain v,/v, ratio used for the sorting of traces can
be assessed in the time window considered by comparing corresponding reflection
patterns (if available) on the PS-time section with those on the PP- (or SS-) time
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FiG. 8. As Fig. 6 but only two-term-truncation and for various numbers of layers.

section. In this way a complete PS-time section can be obtained by joining together
the respective time windows for which satisfactory focusing has been achieved.

To minimize the effort of a PS-velocity analysis we can give a rough estimate for
the PS-stacking velocity if the PP-stacking velocity function is available. Let us
assume that the velocity ratio of compressional and shear waves v,/v, is the same for
all layers:

v v
~B& — P — constant. (6)
vsk U
We then obtain
T’ps = {’pp(vs/ vp)l/2 = \/ (Tpp Uss)- )

Thus, when using the rms velocity as an estimate of the stacking velocity, a velocity
function for PS-reflections can be approximately derived from the P-wave stacking
velocity analysis and some additional estimate of an average v,/v, ratio.

Normally interval velocities are determined by means of a Dix-type formula.
Such a formula can also be derived for converted waves as presented in Appendix C.
It should be noted, however, that for PS- and SP-waves this formula only allows the
calculation of the product v,v, of compressional and shear wave velocity. An inde-
pendent P-wave (or S-wave) velocity analysis is required for the same time interval
to yield the ratio v,/v, for that interval. The interval velocities can be determined
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only if interval compressional or shear wave velocities are available from the respec-
tive velocity analysis.

The interval velocity ratio v,/v, can be calculated directly from the interval travel-
times of the converted waves A¢®™ and the interval traveltimes of the P-wave At®P
or S-wave At from the corresponding time sections as follows:

1 1
AtPY = 1§ — ) = h,,<— + —~>,

UPn Usn
and
2h
At =t — 1 =,
Sn
or
2h,
Atflpp) — t%’np) _ t{)p,,p.), — _"’

Pn

respectively. Elimination of A, yields

bu AR

v, 2AtP9 — Arl
and

Vg, _ 2ALF — AP

v, Ar®

This result is in agreement with a formula given by Garotta (1987) for average
velocities. An essential requirement is the correct correlation of the events in the
PP-section to those in the PS-sections. This can introduce difficulties, especially
when the conversion properties of the interfaces differ strongly from their reflection
properties. Additional problems can be caused, for example, by different tuning
effects with respect to thin layers for different wave types, by effects of anisotropy or
by insufficient shear wave static corrections. These problems have discussed, e.g. by
McCormack, Dunbar and Sharp (1984) and Garotta (1985), concerning the correla-
tion of PP- and SS-reflections. We believe much of this experience is valid for con-
verted wave reflections as well.

CONCLUSION

It has been shown that the conversion point of a PS- or SP-type reflection in a
horizontally layered medium can be determined approximately using the explicit
formula derived. In order to apply the technique of multiple coverage, the seismic
traces are gathered in common conversion point (CCP) records. The coordinates of
the CCP are calculated for a given depth and an a priori assumption on the average
ratio v,/v;. In the near-offset range, the moveout correction can be calculated with
sufficient accuracy by a hyperbolic approximation of the traveltime curve. There-
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fore, in this range, standard stacking software can be used to process the converted
wave data and produce a stacked PS or SP time section.

The rms velocity has been defined for converted waves of simple PS- or SP-type
and have been related to the product v, v, of the interval velocities by a Dix-type
formula for converted waves. In the application of this formula to obtain the ratio
v,/v, an essential requirement is the correct correlation of the events in the PP-
section to those in the PS-section. This can introduce difficulties, especially when the
conversion properties of the interfaces differ strongly from their reflection properties.
Additional problems can be caused, for example by effects of anisotropy or by insuf-
ficient shear wave static corrections. Even though the determination of P- and
S-wave interval velocities from PP- and PS-data may still encounter difficulties, we
think that CCP stacking of PS-data can confirm or supplement structural informa-
tion obtained from CMP stacking of PP-data.
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APPENDIX A
THE COORDINATES OF THE CONVERSION POINT FOR A SINGLE
HoRri1ZzoNTAL ISOVELOCITY LAYER

Holling and Kiies (1984) calculated the offset of a converted wave from the coordi-
nates of the midpoint and the conversion point. In an analogous way we find the
horizontal distance D of the conversion point from the midpoint.

From Fig. 9 we have

x

D=x,— E’ (A1)
or, with x, = x — x,and x, = z tan B,

x

Dzi—ztan B. (A2)

From Snell’s law and
tan f 1

. _ ! 2, _

sin f§ 7———(1 T+ tan? )’ + tan“ « ool o’
one obtains

tan o
t = . A
B = o) + (nfod? — 1) tan? o] (A3
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With
D+3
tan o = 22 = —= (A4)
z z
we have
X
D + 5
tan f = - (AS)
(D + x/2)*
Z\/[(Up/vs)2 + ((vp/vs)2 - 1) T——
Substituting (AS) into (A2) gives
. P+3
D==2=-— - (A6)
2 D + x/2)*
N 02|
Squaring (A6), we have
2
D* + (zz - %—)DZ — z22kxD + f5(x* + 4x%z%) = 0, (A7)

where k = ((v,/v,)* + D/((vy/v))* — 1). Numerical solutions of this equation have
been presented by Behle and Dohr (1985).
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With the substitutions
m= D/z and  h = (x/22)%
(A7) becomes
m* + (1 — 2hym? — 2k /hm + (b + 1)h = 0.

The roots of this equation are equal to the roots of

2%k /h
m? + /20y + h) — 1]m+yi2\/[z(y+ n)— 1] =0

Thus we obtain the solution

k/h

) . k/h

where y is any of the roots of the cubic equation
VHh =3y =R+ hy+ =21 —h* + (1 —kHh)=0.
Substituting y = § — h/3 + % we get
V¥ +3py+2=0
with
3p=—3n"—%h—1;
and
2q = 35(—16h> — 12h* — 3h + &1 — kPh — }).
{A12) can be solved using Cardano’s formula

¥=—q+ /D + I (—q—/d),

683

(A3)

(A9)

(A10)

(A11)

(A12)

(A13)

with d = g% + p*. (A11) has one real root and two complex roots because d > 0. The
real root is used to find the roots given in (A10). The horizontal distance D of the

conversion point from the midpoint between source point and receiver is
D = mz,

where m can be found from (A10) with the condition

D<E
-2

(A14)

Thus the horizontal distance x,, of the conversion point from the source point is

(A15)
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for PS-converted waves. For converted SP-waves the conversion point is found
from simple geometrical considerations:
X

X
=2 (A16)

APPENDIX B
SERIES EXPANSION FOR THE TRAVELTIMES OF CONVERTED WAVES

Taner and Koehler (1969) have expanded the traveltime function of reflected PP- or
SS-type waves in a horizontally layered medium into a power series

2x)=cy +cox?+eyxt 4o x4, (B1)

Here we want to give an analogous expansion for the traveltime function of con-
verted waves.

The path of a wave which propagates in a horizontally layered medium and is
converted at the nth interface is shown in Fig. 10. The offset x, is given by

- < hev, hy v,
o= £ om0 =0 £ (e s i) (®2

-P zvgk
where hy is the thickness of the kth layer, v,, is the shear wave velocity, and v,, is the
compressional wave velocity in the kth layer. p is the ray parameter and is given by

sin o, X, _ sin B, x,
Upk st ka vsk sSk Usk
— e

¥

FiG. 10. The raypath of a PS-converted wave in a horizontally layered medium.
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For the traveltime ¢, of the converted wave we get

g <vpk ”s)

LT
tasP) = k1<Ju oyt Jﬂ—p%)'

or

The function (1 — p*v?)~ /2 can be expanded into a Taylor series as
1 1x3x5
(1——p1)2) 1/2__1+2p202+ (p22)2 2 4 6(22)3

Substituting in (B2) and (B5) one obtains

Z 95 Z hvpi ™t + 0D,

= Y4 X W+ oY),
=1 k=1
with

1x3x--x(2k—3)
2x4x - x2k—-2)

G =1;q.=
Let

a(pS) = Z h (122"' 3 + v2m 3)’

bm = qmam+1’

and

Pm = 9m Om
Substituting (B9) to (B12) into (B7) and (BS) yields

xps =p Z kaZkAza
k=1

o
tps = Z ’Ykp2k_2
k=1
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(B4)

(BS)

(B6)

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14)

The infinite series (B13) and (B14) are now substituted in (B1). The coefficients of the
power series (B1) can be obtained by comparison with the coefficients of like powers
of p*. The equations for x and t for waves with symmetrical ray paths are of the

same form as those for waves with asymmetrical ray paths.

Therefore we can use the formulae given by Taner and Koehler (1969) in their
Appendix A to calculate the coefficients c{a,,) recursively. The first coefficient ¢, is
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given by

n 1 1 2
¢, = a(lps)Z — ( Z hk<_ + _)) - tg)ns)Z, (B15)
k=1

Pk vsk

which is the square of the vertical two-way traveltime of the converted wave. If the
ratio of compressional and shear wave velocity is constant:

VU, /Vs, = V,/0, = constant, (B16)

(B10) can be written as

1+ <3’i>2m_3
alf = ——E— (a), (B17)
and we find
1+2)\°
) = —2—” o). (B18)

For the second coefficient one obtains

1 1
(ps) zz: i\t
a Uy Vg 1 (B19)
Cy = = ==
g a(ZPS) Z;=l (Upk + vsk)hk vxznsn

where D, is the rms velocity with respect to the nth reflector. For constant ratios of
v,/v; and with (B17) we obtain

Y = Ze PP, (B20)
Further coefficients can be derived by recursion.

The convergence properties of the traveltime expansion for converted waves are
qualitatively the same as those for the non-converted reflections. This can be shown
by substituting (B10) into proofs given by Al-Chalabi (1973).

APPENDIX C
A Dix-ForMULA FOR CONVERTED WAVES

The approximation of the PS-traveltime curve by a hyperbola led us to the defini-
tion of the rms velocity b, for PS- or SP-converted reflections.
Squaring (5) we get

iz, = =ttt &0
Yi-1 (‘— + —>hk

vpk vSk
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and with the vertical two-way traveltime to the nth reflector

51 1
=% | —+— e, (C2)
k=1 Upk Usk

we can write
- Zk 1 (Upk + vsk)hk

Psn t(l’s)

(€3)

The thickness h, of the kth layer can be expressed in terms of the one-way vertical
traveltimes in layer k, t§) and §), of compressional and shear waves, respectively,
and the respective 1nterva1 velocities:

= 3§ vg, + 6 0. (C4)

Furthermore we have

(p)
To U,

o=, (C5)
1‘-0" vp"

Substituting (C4) into (C3) and rearranging by use of (C5) gives

T?ﬁs, (ps) — z (.L.(p) (s))vpk Vg, - (C6)
For the conversion at the (n — 1)th interface we obtain accordingly

02, 189 = z @8 + 1§y, vy, - (C7)

Subtraction of (C7) from (C6) yields

52
B2, t(ps) va(,, l)tg::)_” P + T(s))Up, v, (C8)
or
52 ¢(ps) (ps)
_ Upsa tO va(n 1) tO(n—u C9
vpn Uy = (p) (s) . ( )
T8, + 7o,
With
o) ) = 1) 1) (C10)
we get
~2 t(pS) U ti)PS)
psn _PS(n— (n—1)
Uy, Vs, = o — t(ps’ : (C11)
n Om-1)

(Cl11) is a Dix-Krey-type formula for converted waves from which the product of the
interval velocities for P- and S-waves can be calculated recursively.
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